Evolutionary multitasking in bi-level optimization
نویسندگان
چکیده
منابع مشابه
Multi-objective Optimization of web profile of railway wheel using Bi-directional Evolutionary Structural Optimization
In this paper, multi-objective optimization of railway wheel web profile using bidirectional evolutionary structural optimization (BESO) algorithm is investigated. Using a finite element software, static analysis of the wheel based on a standard load case, and its modal analysis for finding the fundamental natural frequency is performed. The von Mises stress and critical frequency as the proble...
متن کاملModel building using bi-level optimization
In many problems from different disciplines such as engineering, physics, medicine, and biology, a series of experimental data is used in order to generate a model that can describe a system with minimum noise. The procedure for building a model provides a description of the behavior of the system under study and can be used to give a prediction for the future. Herein a novel hierarchical bi-le...
متن کاملA Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms
Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...
متن کاملRobust bi-level optimization models in transportation science.
Mathematical programmes with equilibrium constraints (MPECs) constitute important modelling tools for network flow problems, as they place 'what-if' analyses in a proper mathematical framework. We consider a class of stochastic MPEC traffic models that explicitly incorporate possible uncertainties in travel costs and demands. In stochastic programming terminology, we consider 'here-and-now' mod...
متن کاملMultimodal Optimization Using a Bi-Objective Evolutionary Algorithm
In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution. To this end, evolutionary optimization algorithms (EA) stand as viable methodologies mainly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex & Intelligent Systems
سال: 2015
ISSN: 2199-4536,2198-6053
DOI: 10.1007/s40747-016-0011-y